18

Linearly generated sequences and applications

In this chapter, we develop some of the theory of linearly generated sequences.
As an application, we develop an efficient algorithm for solving sparse systems
of linear equations, such as those that arise in the subexponential-time algorithms
for discrete logarithms and factoring in Chapter 15. These topics illustrate the
beautiful interplay between the arithmetic of polynomials, linear algebra, and the
use of randomization in the design of algorithms.

18.1 Basic definitions and properties

Let F be a field, let V be an F-vector space, and consider an infinite sequence

¥ = {ai}Z,
where a; € V fori = 0,1,2.... We say that ¥ is linearly generated (over F)
if there exist scalars cg,...,cr—; € F such that the following recurrence relation
holds:
k—1
Apyi = Z cjajp; (fori=0,1,2,...).
j=0

In this case, all of the elements of the sequence ¥ are determined by the initial
segment ay, . . . , Ax—1, together with the coefficients cy, . . ., cx—; defining the recur-
rence relation.

The general problem we consider is this: how to determine the coefficients defin-
ing such a recurrence relation, given a sufficiently long initial segment of ¥. To
study this problem, it turns out to be very useful to rephrase the problem slightly.
Let g € F[X] be a polynomial of degree, say, k, and write g = Z?:o a;X/. Next,

486

18.1 Basic definitions and properties 487
define

k
g*x¥ = Z aja;.
j=0

Then it is clear that ¥ is linearly generated if and only if there exists a non-zero
polynomial g such that

X'g)x¥P=0 (fori=0,1,2,...). (18.1)
Indeed, if there is such a non-zero polynomial g, then we can take

co :=—(ao/ay), c1 :=—(ar/ar), ..., cx—1 = —(ax-1/ax)

as coefficients defining the recurrence relation for . We call a polynomial g sat-
isfying (18.1) a generating polynomial for ¥. The sequence ¥ will in general
have many generating polynomials. Note that the zero polynomial is technically
considered a generating polynomial, but is not a very interesting one.

Let G('P) be the set of all generating polynomials for ‘.

Theorem 18.1. The set G(YV) is an ideal of F[X].

Proof. First, note that for all g, h € F[X], we have (g+h)x¥ = (gx¥)+(h*x¥V)—
this is clear from the definitions. It is also clear that for all ¢ € F and g € F[X],
we have (cg) x ¥ = ¢ - (g x V). From these two observations, it follows that G (V')
is closed under addition and scalar multiplication. It is also easy to see from the
definition that G('P) is closed under multiplication by X; indeed, if (X'g) x ¥ = 0
for all i > 0, then certainly, (X(Xg)) * ¥ = (X'*'g) x ¥ = 0 for all i > 0. But any
non-empty subset of F[X] that is closed under addition, multiplication by elements
of F, and multiplication by X is an ideal of F[X] (see Exercise 7.27). O

Since all ideals of F[X] are principal, it follows that G(¥) is the ideal of F[X]
generated by some polynomial ¢ € F[X]—we can make this polynomial unique
by choosing the monic associate (if it is non-zero), and we call this polynomial
the minimal polynomial of . Thus, a polynomial g € F[X] is a generating
polynomial for ¥ if and only if ¢ divides g; in particular, ¥ is linearly generated if
and only if ¢ # 0.

We can now restate our main objective as follows: given a sufficiently long initial
segment of a linearly generated sequence, determine its minimal polynomial.

Example 18.1. One can always define a linearly generated sequence by simply
choosing an initial segment ag, a1, ..., a1, along with scalars cg,...,cxk—1 € F
defining the recurrence relation. One can enumerate as many elements of the
sequence as one wants by using storage for k elements of V', along with storage for
the scalars ¢, . .., cir—1, as follows:

488 Linearly generated sequences and applications

(Bos - -+ Pr—1) < (@0, - - ., ak—1)
repeat
output fy
B — Y2 cibj
(Bos- - B—1) < (Brsv s i1, B")

forever

Because of the structure of the above algorithm, linearly generated sequences are
sometimes also called shift register sequences. Also observe that if F is a finite
field, and V is finite dimensional, the value stored in the “register” (fo, ..., fx—1)
must repeat at some point. It follows that the linearly generated sequence must be
ultimately periodic (see definitions above Exercise 4.21). O

Example 18.2. Linearly generated sequences can also arise in a natural way, as this
example and the next illustrate. Let E := F[X]/(f), where f € F[X] is a monic
polynomial of degree ¢ > 0, and let @ be an element of E. Consider the sequence
Y := {a'}2, of powers of a. For every polynomial g = Zf:o a; X/ € F[X], we
have

k
gx¥= Zajaj = g(a).
j=0

Now, if g(a) = 0, then clearly (X'g) x ¥ = a'g(a) = 0 for all i > 0. Conversely,
if (X'g) x¥ = 0 for all i > 0, then in particular, g(a) = 0. Thus, g is a generating
polynomial for ¥ if and only if g(a) = 0. It follows that the minimal polynomial
¢ of ¥ is the same as the minimal polynomial of a over F, as defined in §16.5.
Furthermore, ¢ # 0, and the degree m of ¢ may be characterized as the smallest
positive integer m such that { o/}l'.”= o 1s linearly dependent; moreover, as E has
dimension ¢ over F, we must have m < ¢. O

Example 18.3. Let V be a vector space over F of dimension ¢ > 0, and let
7:V — V bean F-linear map. Let § € V, and consider the sequence ¥ := {a;} 2,
where a; = 7'(f); that is, ag = f, a1 = 7(f), ap = 7(z(f)), and so on. For every
polynomial g = 25:0 a; X/ € F[X], we have

k
gx¥ =) a;r(p),
j=0
and for every i > 0, we have

k k
X'g) ¥ =Y a;eti(p) = T"<Z ajrj(ﬁ)) =g« V).

Jj=0 Jj=0

18.1 Basic definitions and properties 489

Thus, if g x ¥ = 0, then clearly (Xg) ¥ = 7/(g x ¥) = 7/(0) = O for all i > 0.
Conversely, if (X'g) x ¥ = 0 for all i > 0, then in particular, g x ¥ = 0. Thus, g is
a generating polynomial for ¥ if and only if g x ¥ = 0. The minimal polynomial ¢
of ¥ is non-zero and its degree m is at most ¢; indeed, m may be characterized as
the least non-negative integer such that {T"(,B)}l'.”= o 18 linearly dependent, and since
V has dimension £ over F, we must have m < ¢.

The previous example can be seen as a special case of this one, by taking V' to
be E, 7 to be the a-multiplication map on E, and setting fto 1. O

The problem of computing the minimal polynomial of a linearly generated
sequence can always be solved by means of Gaussian elimination. For exam-
ple, the minimal polynomial of the sequence discussed in Example 18.2 can be
computed using the algorithm described in §17.2. The minimal polynomial of
the sequence discussed in Example 18.3 can be computed in a similar manner.
Also, Exercise 18.3 below shows how one can reformulate another special case of
the problem so that it is easily solved by Gaussian elimination. However, in the
following sections, we will present algorithms for computing minimal polynomials
for certain types of linearly generated sequences that are much more efficient than
any algorithm based on Gaussian elimination.

EXERCISE 18.1. Show that the only sequence for which 1 is a generating polyno-
mial is the “all zero” sequence.

EXERCISE 18.2. Let ¥ = {a;};2 be a sequence of elements of an F-vector space
V. Further, suppose that ‘¥ has non-zero minimal polynomial ¢.

(a) Show that for all polynomials g,h € F[X], if g = h (mod ¢), then

gx¥Y=hxVY.
(b) Let m := deg(¢). Show that if g € F[X] and (X'g) x ¥ = 0 for all
i=0,...,m—1, then g is a generating polynomial for V.

EXERCISE 18.3. This exercise develops an alternative characterization of linearly
generated sequences. Let ¥ = {z;}2 be a sequence of elements of F. Further,
suppose that ¥ has minimal polynomial ¢ = Z;":O ¢; X/ with m > 0 and ¢,, = 1.
Define the matrix

<0 21 0 Zm-—1

A — ZI ZZ T Zm E mem

im-1 Zm *°° L2m-2

490 Linearly generated sequences and applications
and the vector
W= (Zps e Zome1) € F1XM,
Show that
v =(=C0s...,—Cp1) € FX™
is the unique solution to the equation
VA =w.

Hint: show that the rows of A form a linearly independent family of vectors by
making use of Exercise 18.2 and the fact that no polynomial of degree less than m
is a generating polynomial for V.

EXERCISE 18.4. Letcg,...,cxk—1 € F and z¢,...,2x—1 € F. Foreachi > 0, let

k-1
Tk+i += 2 CjZj+i-
j=0
Given n > 0, along with cq,...,ck—1 and zo, ..., Zxk—1, show how to compute z,

using O(len(n)k?) operations in F.

EXERCISE 18.5. Let V be a vector space over F, and consider the set V' ** of all
infinite sequences {a;} 2, where the a;’s are in V. Let us define the scalar product
ofge F[X]and ¥ € V** as

g-¥={Xg) * P2, e Ve,

Show that with this scalar product, and addition defined component-wise, V** is
an F[X]-module, and that a polynomial g € F[X] is a generating polynomial for
YeV**ifandonlyifg-%¥ = 0.

18.2 Computing minimal polynomials: a special case

We now tackle the problem of efficiently computing the minimal polynomial of a
linearly generated sequence from a sufficiently long initial segment.

We shall first address a special case of this problem, namely, the case where the
vector space V' is just the field F. In this case, we have

lP = {zi ?zo’

where z; € F fori =0,1,2,....

Suppose that we do not know the minimal polynomial ¢ of ‘¥, but we know
an upper bound M > 0 on its degree. Then it turns out that the initial segment
20,21, - - - Zam—1 completely determines ¢, and moreover, we can very efficiently

18.2 Computing minimal polynomials: a special case 491

compute ¢ given this initial segment. The following theorem provides the essential
ingredient.

Theorem 18.2. Let ¥ = {z;};Z, be a sequence of elements of F, and define the
reversed Laurent series

z:=) uX" Ve F(x™),
i=0

whose coefficients are the elements of the sequence . Then for every g € F[X],
we have g € G(W) if and only if gz € F[X]. In particular, ¥ is linearly generated
if and only if z is a rational function, in which case, its minimal polynomial is the
denominator of z when expressed as a fraction in lowest terms.

Proof. Observe that for every polynomial g € F[X] and every integer i > 0,
the coefficient of X0+ in the product gz is equal to X'g x ¥ —just look at the
formulas defining these expressions! It follows that g is a generating polynomial
for ¥ if and only if the coefficients of the negative powers of X in gz are all zero,
which is the same as saying that gz € F[X]. Further, if g # 0 and h := gz € F[X],
then deg(h) < deg(g)—this follows simply from the fact that deg(z) < O (together
with the fact that deg(h) = deg(g) + deg(z)). All the statements in the theorem
follow immediately from these observations. O

By virtue of Theorem 18.2, we can compute the minimal polynomial ¢ of ¥
using the algorithm in §17.5.1 for computing the numerator and denominator of a
rational function from its reversed Laurent series expansion. More precisely, we
can compute ¢ given the bound M on its degree, along with the first 2M elements
20, - - -» Zom—1 of ¥, using O(M 2) operations in F. Just for completeness, we write
down this algorithm:

1. Run the extended Euclidean algorithm on inputs
f=XM and h:=z2oX*M 4 2 XM2 4ok o,
and apply Theorem 17.8 with f, h, r* := M, and t* := M, to obtain the
polynomials ', 5", ¢'.
2. Output ¢ := '/ 1c(?').

EXERCISE 18.6. Suppose F is a finite field and that ¥ := {z;} 7 is linearly gen-
erated, with minimal polynomial ¢. Further, suppose X { ¢. Show that ¥ is purely
periodic with period equal to the multiplicative order of [X]y € (F[X]/(¢))*. Hint:
use Exercise 17.12 and Theorem 18.2.

492 Linearly generated sequences and applications

18.3 Computing minimal polynomials: a more general case

Having dealt with the problem of finding the minimal polynomial of a linearly gen-
erated sequence ¥, whose elements lie in F, we address the more general problem,
where the elements of ¥ lie in a vector space V' over F. We shall only deal with a
special case of this problem, but it is one which has useful applications:

e First, we shall assume that V" has finite dimension ¢ > O over F.

e Second, we shall assume that the sequence ¥ = {ai};‘io has full rank, by

which we mean the following: if the minimal polynomial ¢ of ¥ over F
has degree m, then {oz,-}l'.':o1 is linearly independent. This property implies
that the minimal polynomial of ¥ is the monic polynomial ¢ € F[X] of
least degree such that ¢ x ¥ = 0. The sequences considered in Examples

18.2 and 18.3 are of this type.
e Third, we shall assume that F is a finite field.

The dual space. Before presenting our algorithm for computing minimal polyno-
mials, we need to discuss the dual space Dg(V') of V' (over F), which consists
of all F-linear maps from V into F. Thus, Dg(V) = Hompg(V, F), and is a
vector space over F, with addition and scalar multiplication defined point-wise
(see Theorem 13.12). We shall call elements of D (V') projections.

Now, fix a basis S = {y,-}f=1 for V. As was discussed in §14.2, every element
6 € V has a unique coordinate vector Vecs(6) = (c1,...,c) € F™t where
6 = Y, civi. Moreover, the map Vecs : V' — F Xt is a vector space isomorphism.

To each projection # € Dp(V) we may also associate the coordinate vector
(1), ..., 7(y))" € F™>1 If U is the basis for F consisting of the single element
1F, then the coordinate vector of x is Mats 1-(7), that is, the matrix of x relative
to the bases S and U°. By Theorem 14.4, the map Mats 1 : Dp(V) — F*lisa
vector space isomorphism.

In working with algorithms that compute with elements of V' and Dp(V), we
shall assume that such elements are represented using coordinate vectors rela-
tive to some convenient, fixed basis for V. If § € V has coordinate vector
(c1,...,c1) € F'™ and © € Dp(V) has coordinate vector (dy,...,d,)" € F*!,
then 7 (0) is easily computed, using O(¢) operations in F, as Zle cid;.

We now return to the problem of computing the minimal polynomial ¢ of the
linearly generated sequence ¥ = {a;}°,. Assume we have a bound M > 0 on the
degree of ¢. Since ¥ has full rank and dimp (V') = ¢, we may assume that M < {.

For each 7 € Dr(V'), we may consider the projected sequence ¥, := {m(a;)} 2.
Observe that ¢ is a generating polynomial for ‘¥, ; indeed, for every polynomial
g € F[X], we have g x ¥, = z(g » ¥), and hence, for all i > 0, we have
Xig) x ¥, = 7(X'¢p) » ¥) = 7(0) = 0. Let ¢, € F[X] denote the minimal

18.3 Computing minimal polynomials: a more general case 493

polynomial of . Since ¢, divides every generating polynomial of ‘¥, and since
¢ is a generating polynomial for ¥, it follows that ¢, divides ¢.

This suggests the following algorithm for efficiently computing the minimal
polynomial of ¥, using the first 2M terms of ¥:

Algorithm MP. Given the first 2M terms of the sequence ¥ = {a;}2, do the
following:

g« 1€ F[X]
repeat
choose 7 € Dp (V') at random
compute the first 2M terms of the projected sequence ¥,
use the algorithm in §18.2 to compute the minimal polynomial
¢ of ¥,
g < lem(g, ¢r)
untilg x¥ =0
output g

A few remarks on the above procedure are in order:

e in every iteration of the main loop, g is the least common multiple of a
number of divisors of ¢, and hence is itself a divisor of ¢; in particular,
deg(g) < M;

e under our assumption that ¥ has full rank, and since g is a monic divisor of
@, if g » ¥ = 0, we may safely conclude that g = ¢;

e under our assumption that F is finite, choosing a random element = of
Dp(V') amounts to simply choosing at random the entries of the coordinate
vector of r, relative to some basis for V',

e we also assume that elements of V' are represented as coordinate vectors,
so that applying a projection # € Dp(V) to an element of V takes O({)
operations in F'; in particular, in each loop iteration, we can compute the
first 2M terms of the projected sequence ¥, using O(M¢) operations in F;

e similarly, adding two elements of V', or multiplying an element of V' by
a scalar, takes O(¢) operations in F; in particular, in each loop iteration,
we can compute g x ¥ using O(M{) operations in F (and using the first
M +1 < 2M terms of V).

Based on the above observations, it follows that when the algorithm halts, its
output is correct, and that the cost of each loop iteration is O(M{) operations in
F. The remaining question to be answered is this: what is the expected number of
iterations of the main loop? The answer to this question is O(1), which leads to a
total expected cost of Algorithm MP of O(MY¥) operations in F.

494 Linearly generated sequences and applications

The key to establishing that the expected number of iterations of the main loop
is constant is provided by the following theorem.

Theorem 18.3. Let ¥ = {a;}Z, be a linearly generated sequence over the field

F, where the a;’s are elements of a vector space V of finite dimension £ > 0. Let

¢ be the minimal polynomial of ¥ over F, let m := deg(¢), and assume that ¥

has tull rank (i.e., {a,-};’:ol is linearly independent). Finally, let F[X], denote the

vector space over F consisting of all polynomials in F[X] of degree less than m.
Under the above assumptions, there exists a surjective F-linear map

06 :Dp(V)—> F[X]<m

such that for all # € D (V'), the minimal polynomial ¢, of the projected sequence
Vo= {z()} 2, satisfies

- ¢
ged(o(n),)’

Proof. While the statement of this theorem looks a bit complicated, its proof is
quite straightforward, given our characterization of linearly generated sequences
in Theorem 18.2 in terms of rational functions. We build the linear map o as the
composition of two linear maps, oy and o;.

Let us define the map

oo: Dp(V)— F(X™")

o

[oe]
T 2 ﬂ(ai)X_(H'l).
i=0

We also define the map o to be the ¢-multiplication map on F (X ~1)—that is, the
map that sends z € F(X~ ") to¢-z € F(X ~1). The map o is just the composition
o = o1 o 0y. Itis clear that both ¢y and o, are F-linear maps, and hence, so is o.

First, observe that for # € Dg(V), the series z := oo(x) is the series associ-
ated with the projected sequence ¥, as in Theorem 18.2. Let ¢, be the minimal
polynomial of ¥,. Since ¢ is a generating polynomial for ¥, it is also a generating
polynomial for ¥,. Therefore, Theorem 18.2 tells us that

h:=0(x)=¢- -z € F[X]l<m,

and that ¢, is the denominator of z when expressed as a fraction in lowest terms.
Now, we have z = h/¢, and it follows that ¢, = ¢/ gcd(h, ¢p) is this denominator.

Second, the hypothesis that {oc,-};”z_o1 is linearly independent implies that
dimp(Imog) > m (see Exercise 13.21). Also, observe that o] is an injective

map. Therefore, dimgp(Imo) > m. In the previous paragraph, we observed

18.3 Computing minimal polynomials: a more general case 495

that Imo C F[X]<y, and since dimp(F[X]<,) = m, we may conclude that
Imo = F[X]<«;. That proves the theorem. O

Given the above theorem, we can analyze the expected number of iterations of
the main loop of Algorithm MP.

First of all, we may as well assume that the degree m of ¢ is greater than 0,
as otherwise, we are sure to get ¢ in the very first iteration. Let zy,..., 75 be the
random projections chosen in the first s iterations of Algorithm MP. By Theo-
rem 18.3, each o(x;) is uniformly distributed over F[X].,,, and we have g = ¢ at
the end of loop iteration s if and only if gcd(¢, o(71),...,0(xs)) = 1.

Let us define Aﬁ(s) to be the probability that gcd(¢, f1,..., fs) = 1, where
f1,..., fs are randomly chosen from F[X].,,. Thus, the probability that we have
g = ¢ at the end of loop iteration s is equal to A?;(s). While one can ana-

lyze the quantity A‘ﬁ(s), it turns out to be easier, and sufficient for our purposes,
to analyze a different quantity. Let us define A’.(s) to be the probability that
gcd(f1,..., fs) =1, where f1, ..., fs are randomly chosen from F[X],,. Clearly,
A%(s) > AT (s).

Theorem 18.4. If F is a finite field of cardinality q, and m and s are positive
integers, then we have

AR(s)=1-1/¢""+(qg- 1) /g™

Proof. For each positive integer n, let U, denote the set of all tuples of polyno-
mials (f1,..., fs) € F[X]Z, with ged(f1,...,fs) = 1, and let u, := |U,|. Also,
for each monic polynomial # € F[X] of degree less that n, let U, denote the
set of all s-tuples of polynomials of degree less than n whose gcd is . Observe
that the set U, is in one-to-one correspondence with U,_x, where k := deg(h),
via the map that sends (f1,...,fs) € Uup to (f1/h,...,fs/h) € Upi. As
there are g* possible choices for h of degree k, if we define ¥, to be the set
of tuples (f1,...,fs) € F[X]Z, with deg(ged(f1,...,fs)) = k, we see that

[Vik| = ¢*un_i. Every non-zero tuple in F[X]X} appears in exactly one of the
sets V,k, for k =0,...,n — 1. Taking into account the zero tuple, it follows that
n—1
¢ =1+) s, (18.2)
k=0
which holds for all n» > 1. Replacing n by n — 1 in (18.2), we obtain
n—2
¢ =14 Y d i (18.3)

k=0

496 Linearly generated sequences and applications

which holds for all n > 2, and indeed, holds for n = 1 as well. Subtracting g times
(18.3) from (18.2), we deduce that for all n > 1,

sn _ _sn—s+l1

q =1 +u, — q,
and rearranging terms:
U, = qsn _ qsn—s+1 +q-— 1.

Therefore,
AR(S) = un/¢™ =1-1/¢"" +(q-1/q¢". O

From the above theorem, it follows that for s > 1, the probability P, that Algo-
rithm MP runs for more than s loop iterations is at most 1/¢*~!. If L is the total
number of loop iterations, then

E[L] = ZPL>1 —1+2P <1+21/q5 ‘—1+—<3

i>1 s>1 s>1

Let us summarize all of the above analysis with the following:

Theorem 18.5. Let ¥ be a sequence of elements of an F-vector space V of finite
dimension £ > 0 over F, where F is a finite field. Assume that ¥ is linearly
generated over F with minimal polynomial ¢ € F[X] of degree m, and that ¥
has full rank (i.e., the first m terms of ¥ form a linearly independent family of
elements). Then given an upper bound M > 0 on m, along with the first 2M
elements of ¥, Algorithm MP correctly computes ¢ using an expected number of
O(MY) operations in F.

We close this section with the following observation. Suppose the sequence ¥
is of the form {z’ (ﬁ)}°° ,where f € Vand ¢ : V — V is an F-linear map.
Suppose that with respect to some basis S for V, elements of V' are represented
by their coordinate vectors (which are elements of F Xty "and elements of Dg(V)
are represented by their coordinate vectors (which are elements of F'*!). The
linear map 7 also has a corresponding matrix A = Mats s(V,V) € F*¢, so that
evaluating 7 at a point « in V' corresponds to multiplying the coordinate vector of
a on the right by A. Now, suppose f € V has coordinate vector v € F'*¢ and
that 7 € Dp(V) has coordinate vector w € F*!. Then if ¥ is the sequence of
coordinate vectors of the elements of ¥, we have

¥ = {(vA'}2, and ¥, = {(vA'W}Z,.

This more concrete, matrix-oriented point of view is sometimes useful; in partic-
ular, it makes quite transparent the symmetry of the roles played by g and z in
forming the projected sequence.

18.4 Solving sparse linear systems 497

EXERCISE 18.7. If |F| = g and ¢ € F[X] is monic and factors into monic irre-
ducible polynomials in F[X] as ¢ = gbil ...y, show that

r r
Ai(l) - H(l _ g des@y > 1 Z g~ dee@n)
i=1 i=1
From this, conclude that the probability that Algorithm MP terminates after just one
loop iteration is 1 — O(m/q), where m = deg(¢). Thus, if ¢ is very large relative
to m, it is highly likely that Algorithm MP terminates after just one iteration of the
main loop.

18.4 Solving sparse linear systems

Let V' be a vector space of finite dimension ¢ > 0 over a finite field F, and let
7 :V — V be an F-linear map. The goal of this section is to develop time- and
space-efficient algorithms for solving equations of the form

(y) = 6; (18.4)

that is, given 7 and 6 € V, find y € V satisfying (18.4). The algorithms we
develop will have the following properties: they will be probabilistic, and will
use an expected number of O(?) operations in F, an expected number of O(¢)
evaluations of 7, and space for O(¢) elements of F. By an “evaluation of 7,” we
mean the computation of 7(a) fora given @ € V.

We shall assume that elements of V' are represented as coordinate vectors with
respect to some fixed basis for V. This means that a single element of V' is repre-
sented as a vector of ¢ elements of F. Now, if the matrix of v with respect to the
given basis is sparse, having, say, £!*°(1) non-zero entries, then the space required
to represent 7 is £!t°(1) elements of F, and the time required to evaluate 7 is ¢!+
operations in F. Under these assumptions, our algorithms to solve (18.4) use an
expected number of £27°(1) operations in F, and space for £!7°(1) elements of F.
This is to be compared with standard Gaussian elimination: even if the original
matrix is sparse, during the execution of the algorithm, most of the entries in the
matrix may eventually be “filled in” with non-zero field elements, leading to a run-
ning time of Q(¢3) operations in F, and a space requirement of Q(¢?) elements of
F. Thus, the algorithms presented here will be much more efficient than Gaussian
elimination when the matrix of 7 is sparse.

We hasten to point out that the algorithms presented here may be more efficient
than Gaussian elimination in other cases, as well. All that matters is that ¢ can
be evaluated using o(£?) operations in F and/or represented using space for o(¢?)
elements of F'—in either case, we obtain a time and/or space improvement over
Gaussian elimination. Indeed, there are applications where the matrix of the linear

498 Linearly generated sequences and applications

map = may not be sparse, but nevertheless has special structure that allows it to be
represented and evaluated in subquadratic time and/or space.
We shall only present algorithms that work in two special, but important, cases:

e the first case is where 7 is bijective,

e the second case is where 7 is not bijective, 6 = 0, and a non-zero solution y
to (18.4) is required (i.e., we are looking for a non-zero element of Ker 7).

In both cases, the key will be to use Algorithm MP in §18.3 to find the minimal
polynomial ¢ of the linearly generated sequence

Vi={a;} 2, (ai:= 7(p), i=0,1,...), (18.5)

where f is a suitably chosen element of V. From the discussion in Example 18.3,
this sequence has full rank, and so we may use Algorithm MP. We may use M := ¢
as an upper bound on the degree of ¢ (assuming we know nothing more about = and
p that would allow us to use a smaller upper bound). In using Algorithm MP in this
application, note that we do not want to store ay, . .., az— —if we did, we would
not satisfy our stated space bound. Instead of storing the @;’s in a “warehouse,” we
use a “‘just in time” strategy for computing them, as follows:

e In the body of the main loop of Algorithm MP, where we calculate the
projections z; := x(a;), fori =0...2¢ — 1, we perform the computation as
follows:

a<—f
fori «0to2¢{ —1do
zi <« w(a), a <« t(a)

e In the test at the bottom of the main loop of Algorithm MP, if g =
2?:0 a ij , we compute v := g x ¥ € V using the following Horner-like
scheme:

v<0
for j < k down to 0 do
vet(v)+a;-f

With this implementation, Algorithm MP uses an expected number of O(£?) oper-
ations in F, an expected number of O(¢) evaluations of 7z, and space for O(¢)
elements of F. Of course, the “warehouse” strategy is faster than the “just in time”
strategy by a constant factor, but it uses about £ times as much space; thus, for large
¢, using the “just in time” strategy is a very good time/space trade-off.

The bijective case. Now consider the case where 7 is bijective, and we want
to solve (18.4) for a given 6 € V. We may as well assume that 6 # 0, since
otherwise, y = 0 is the unique solution to (18.4). We proceed as follows. First,

18.4 Solving sparse linear systems 499

using Algorithm MP as discussed above, compute the minimal polynomial ¢ of the
sequence ‘¥ defined in (18.5), using ff := 6. Let ¢ = 37 ¢; X/, where ¢, = 1 and
m > 0. Then we have

cod+c1t(8) + -+ cpt™(8) = 0. (18.6)

We claim that ¢y # 0. To prove the claim, suppose that co = 0. Then applying
77! to (18.6), we would obtain

18+ 4 eyt (8 =0,

which would imply that ¢/X is a generating polynomial for ‘P, contradicting the
minimality of ¢. That proves the claim.
Since cg # 0, we can apply 771 to (18.6), and solve for y = 771(§) as follows:

y=—c; 16+ +cnt™ 1 (8)).

To actually compute y, we use the same “just in time” strategy as was used in the
implementation of the computation of g = ¥ in Algorithm MP, which costs O(£?)
operations in F, O({) evaluations of 7, and space for O({) elements of F.

The non-bijective case. Now consider the case where 7 is not bijective, and we
want to find non-zero y € V such that 7(y) = 0. The idea is this. Suppose we
choose an arbitrary, non-zero element f§ of V', and use Algorithm MP to compute
the minimal polynomial ¢ of the sequence ¥ defined in (18.5), using this value of
p.Let g = Z;":O ¢; X/, where m > 0 and ¢,, = 1. Then we have

cofp+cit(f)+---+cut™(P) =0. (18.7)
Let
yi=cif+-+ et (P).

We must have y # 0, since y = 0 would imply that |¢/X | is a non-zero generating
polynomial for ¥, contradicting the minimality of ¢. If it happens that ¢g = O,
then equation (18.7) implies that 7(y) = 0, and we are done. As before, to actually
compute y, we use the same “just in time” strategy as was used in the implementa-
tion of the computation of g x ¥ in Algorithm MP, which costs O(£?) operations
in F, O(¢) evaluations of 7, and space for O(¢) elements of F.

The above approach fails if ¢ # 0. However, in this “bad” case, equation
(18.7) implies that f = —¢ 11'(;/); in particular, f € Im z. One way to avoid such
a “bad” f is to randomize: as 7 is not surjective, the image of 7 is a subspace
of V of dimension strictly less than £, and therefore, a randomly chosen f lies
in the image of v with probability at most 1/|F|. So a simple technique is to
choose repeatedly f at random until we get a “good” f. The overall complexity of

500 Linearly generated sequences and applications

the resulting algorithm will be as required: o(t?) expected operations in F, O({)
expected evaluations of 7, and space for O(¢) elements of F.

As a special case of this situation, consider the problem that arose in Chapter 15
in connection with algorithms for computing discrete logarithms and factoring. We
had to solve the following problem: given an ¢ x (£ — 1) matrix A with entries in
a finite field F, containing £ I+o(1) hon-zero entries, find non-zero v € F'*¢ such
that vA = 0. To solve this problem, we can augment the matrix A, adding an extra
column of zeros, to get an ¢ x ¢ matrix A’. Now, let V = F'** and let 7 be the
F-linear map on V that sends y € V to yA’. A non-zero solution y to the equation
7(y) = 0 will provide us with the solution to our original problem; thus, we can
apply the above technique directly, solving this problem using ¢2*°() expected
operations in F, and space for £!*°(1) elements of F. As a side remark, in this
particular application, we can choose a “good” f in the above algorithm without
randomization: just choose f := (0, ...,0, 1), which is clearly not in the image of 7.

18.5 Computing minimal polynomials in F[X]/(f) (II)

Let us return to the problem discussed in §17.2: F is a field, f € F[X] is a monic
polynomial of degree £ > 0, and E := F[X]/(f); we are given an element @ € E,
and want to compute the minimal polynomial ¢ € F[X] of a over F. As dis-
cussed in Example 18.2, this problem is equivalent to the problem of computing
the minimal polynomial of the sequence

Y= {ai};ﬁo (ai = ai’ i = O,l’.“)’

and the sequence has full rank; therefore, we can use Algorithm MP in §18.3
directly to solve this problem, assuming F is a finite field.

If we use the “just in time” strategy in the implementation of Algorithm MP,
as was used in §18.4, we get an algorithm that computes the minimal polynomial
of & using O(£3) expected operations in F, but space for just O(£?) elements of
F. Thus, in terms of space, this approach is far superior to the algorithm in §17.2,
based on Gaussian elimination. In terms of time complexity, the algorithm based
on linearly generated sequences is a bit slower than the one based on Gaussian
elimination (but only by a constant factor). However, if we use any subquadratic-
time algorithm for polynomial arithmetic (see §17.6 and §17.7), we immediately
get an algorithm that runs in subcubic time, while still using linear space. In the
exercises below, you are asked to develop an algorithm that computes the minimal
polynomial of a using just O(¢>>) operations in F, at the expense of requiring
space for O(¢!) elements of F—this algorithm does not rely on fast polynomial
arithmetic, and can be made even faster if such arithmetic is used.

18.6 The algebra of linear transformations (x) 501

EXERCISE 18.8. Let f € F[X] be a monic polynomial of degree £ > 0 over a field
F,andlet E := F[X]/(f). Also, let £ := [X]; € E. For computational purposes,
we assume that elements of E and Dg(FE) are represented as coordinate vectors
with respect to the usual “polynomial” basis (&1 }le. For g € E, let My denote
the f-multiplication map on E that sends @ € E to aff € E, which is an F-linear
map from E into E.
(a) Given as input the polynomial f defining E, along with a projection
€ Dp(FE) and an element § € E, show how to compute the projection
wo My e Dr(E), using 0((?) operations in F.
(b) Given as input the polynomial f defining E, along with a projection
7 € Dp(E), an element « € E, and a parameter kK > 0, show how to
compute (z(1), z(a), ..., z(a®1y) using just O(kf + k1/2¢2) operations in
F, and space for O(k'/2¢) elements of F. Hint: use the same hint as in
Exercise 17.3.

EXERCISE 18.9. Let f € F[X] be a monic polynomial over a finite field F of
degree ¢ > 0, and let E := F[X]/(f). Show how to use the result of the previous
exercise, as well as Exercise 17.3, to get an algorithm that computes the minimal
polynomial of @ € E over F using O(£>?) expected operations in F, and space for
o) operations in F.

EXERCISE 18.10. Let f € F[X] be a monic polynomial of degree £ > 0 over
a field F (not necessarily finite), and let E := F[X]/(f). Further, suppose that
f is irreducible, so that E is itself a field. Show how to compute the minimal
polynomial of @« € E over F deterministically, using algorithms that satisfy the
following complexity bounds:

(a) O3 operations in F and space for O(¢) elements of F;
(b) O(f*d) operations in F and space for O(¢'?) elements of F.

18.6 The algebra of linear transformations ()

Throughout this chapter, one could hear the whispers of the algebra of linear trans-
formations. We develop some of the aspects of this theory here, leaving a number
of details as exercises. It will not play a role in any material that follows, but it
serves to provide the reader with a “bigger picture.”

Let F be a field and V' be an F-vector space. We denote by Lp(}) the set
of all F-linear maps from V into V. Thus, Lr(V) = Hompg(V,V), and is a
vector space over F, with addition and scalar multiplication defined point-wise
(see Theorem 13.12). Elements of L (V') are called linear transformations.

For 7,7/ € Lp(V), the composed map, 7 o 7/, which sends « € V to 7(7'(«))

502 Linearly generated sequences and applications

is also an element of L (V). As always, function composition is associative (i.e.,
for 7,7',7" € Lr(V), we have 7 o (7' o) = (r o ') o ©"); however, function
composition is not in general commutative (i.e., we may have 7 o 7/ # 7/ o 7 for
some 7,7 € Lp(V)). The following theorem considers the interaction between
composition, addition, and scalar multiplication.

Theorem 18.6. For all z,7',7" € Lr(V), and for all ¢ € F, we have:
(i to(t’+7")=1t07 +71017";
(i) (Z'+7or=70r+17"01;

(iii) (ct) ot =c(z o 7') = 7o (c7).
Proof. Exercise. O

Under the addition operation and scalar multiplication of the vector space
Lp(V), and defining multiplication on Lr(}') using the “o” operation, the pre-
vious theorem implies that L (V") satisfies all the properties of an F-algebra (see
Definition 16.1), except for the fact that multiplication is not commutative (the
identity map acts as the multiplicative identity). Thus, we can think of L (V') as a
non-commutative F-algebra.

Let 7 € Lp(V) be a linear transformation. For each integer i > 0, the map
7' (i.e., the i-fold composition of 7) is also an element of £L(V). Note that 70
is by definition just the identity map on V. For each polynomial g € F[X], with
g=2,aX !, we denote by g(7) the linear transformation

g(r) =) ai' € LE(V).
i
Thus, for a € V, the value of g(7) at a is Y, a; 7' (a).

Theorem 18.7. For all Tt € L (V), for all ¢ € F, and for all g,h € F[X], we
have:

1) g(7) + h(z) = (g + h)(7);
(i) ¢ - g(7) = (cg)(7);
(1ii) g(z) o h(r) = (gh)(z) = h(7) 0 g(7).
Proof. Exercise. O

Let 7 € Lg(V) be a linear transformation. We define
Flz] := {g(z) : g € F[X]},

which is a subset of L¢(1). By the previous theorem, it is clear that F[z] is closed
under addition, multiplication (i.e., composition), and scalar multiplication, and

18.6 The algebra of linear transformations (x) 503

that F[7] is in fact an F-algebra in the usual sense (i.e., multiplication is commu-
tative). Moreover, the expressions F[z] and g(z) (for g € F[X]) have the same
meaning as in §16.1.

Let ¢, be the minimal polynomial of 7 over F, so that F[r] is isomorphic as an
F-algebra to F[X]/(¢.). We can also characterize ¢, as follows:

if there exists a non-zero polynomial g € F[X] such that g(z) = 0,
then ¢; is the monic polynomial of least degree with this property;
otherwise, ¢, = 0.

Another way to characterize ¢ is as follows:

¢- is the minimal polynomial of the sequence {z'}%,.

If V has finite dimension ¢ > 0, then by Theorem 14.4, L (V') is isomorphic as
an F-vector space to F**!, and so in particular, has dimension ¢2. Therefore, there
must be a linear dependence among 1, 7,..., Téz, which implies that the minimal
polynomial of 7 is non-zero with degree at most ¢> (and at least 1). We shall show

below that in this case, the minimal polynomial of 7 actually has degree at most £.

For a fixed 7 € L¢(V'), we can define a “scalar multiplication” operation ®, that
maps g € F[X]anda € V to

goa:=g(r)(a) eV,
thatis, if g = Y, a; X', then

g0a= Z a;it' ().
i
Theorem 18.8. The scalar multiplication ®, together with the usual addition oper-
ation on V', makes V into an F[X]-module; that is, for all g,h € F[X] and
a,f €V, we have

gothoa)=(ghoa, (g+hoa=g0a+h0oa,
go0(a+p)=g0a+gopf loa=a.

Proof. Exercise. O

Note that each choice of 7 gives rise to a different F[X]-module structure, but all
of these structures are extensions of the usual vector space structure, in the sense
that forallc € Fand @ € V, we have c © @ = ca.

Now, for fixed 7 € Lr(V) and a € V, consider the F[X]-linear map p;, :
F[X] - V thatsends g € F[X]to g@a = g(r)(a). The kernel of this map must be
a submodule, and hence an ideal, of F[X]; since every ideal of F[X] is principal,
it follows that Ker p; 4 is the ideal of F[X] generated by some polynomial ¢; g,

504 Linearly generated sequences and applications

which we can make unique by insisting that it is monic or zero. We call ¢, , the
minimal polynomial of « under z. We can also characterize ¢, , as follows:

if there exists a non-zero polynomial g € F[X] such that g(z)(a) =
0, then ¢, o the monic polynomial of least degree with this property;
otherwise, ¢, , = 0.

Another way to characterize ¢, 4 is as follows:
¢z« is the minimal polynomial of the sequence {7/(a)}?,.
Note that since ¢.(7) is the zero map, we have

¢: 0a= ¢ (r)(a) =0,

and hence ¢, € Ker p; o, which means that ¢ 4 | ¢-.

Now consider the image of p; 4, which we shall denote by (a),. As an F[X]-
module, (), is isomorphic to F[X]/(¢;). In particular, if ¢, 4 is non-zero and
has degree m, then (@), is a vector space of dimension m over F; indeed, the
elements a, 7(), ..., 7" '(a) form a basis for (a), over F; moreover, m is the
smallest non-negative integer such that {Ti(a)};”: o 1s linearly dependent.

Observe that for every f € ()., we have ¢, , ® f = 0; indeed, if § = g a, then

Pra@ (8O a) = (¢Pra8) O =g0O (PrgOa) =g00=0.

The following three theorems develop some simple facts; the proofs of these are
straightforward, and left as exercises. In each theorem, 7 is an element of L¢(V),
and O is the associated scalar multiplication that makes V' into an F[X]-module.

Theorem 18.9. Let a € V have minimal polynomial f € F[X] under t, and
let p € V have minimal polynomial g € F[X] under z. If gcd(f,g) = 1, then
(@); N {P); = {0}, and a + f has minimal polynomial f - g under z.

Theorem 18.10. Let « € V. Let f € F[X] be a monic irreducible polynomial
such that f¢ ®a = 0 but f~' ® a # 0 for some integer e > 1. Then f* is the
minimal polynomial of « under z.

Theorem 18.11. Let @ € V, and suppose that « has minimal polynomial f € F[X]
under v, with f # 0. Let g € F[X]. Then g ® a has minimal polynomial

f/ gcd(f, g) under 7.

We are now ready to state the main result of this section, whose statement and
proof are analogous to that of Theorem 6.41:

Theorem 18.12. Let v € L§(V), and suppose that = has non-zero minimal poly-
nomial ¢. Then there exists § € V such that the minimal polynomial of f under ©

is ¢.

18.6 The algebra of linear transformations (x) 505

Proof. Let © be the scalar multiplication associated with 7. Let ¢ = ¢}' - - - ¢;" be
the factorization of ¢ into monic irreducible polynomials in F[X].
First, we claim that for each i = 1,...,r, there exists a; € V such that

¢/pi © a; # 0. Suppose the claim were false: then for some i, we would have
¢/d:i ©@a =0 for all @ € V; however, this means that (¢/¢;)(r) = 0, contradicting
the minimality property in the definition of the minimal polynomial ¢. That proves
the claim.

Let ay, ..., a, be as in the above claim. Then by Theorem 18.10, each ¢/ qﬁf’ Ou;
has minimal polynomial q,’)f’ under z. Finally, by Theorem 18.9,

pi=¢/d) ar+--+d/P O
has minimal polynomial ¢ under z. O

Theorem 18.12 says that if 7 has minimal polynomial ¢ of degree m > 0, then
there exists § € V such that {Ti(ﬁ)}:.”:_ol is linearly independent. From this, it
immediately follows that:

Theorem 18.13. If V' has finite dimension ¢ > 0, then for every T € Lp(V'), the
minimal polynomial of t is non-zero of degree at most {.

We close this section with a simple observation. Let V' be an arbitrary F[X]-
module with scalar multiplication ®. Restricting the scalar multiplication from
F[X] to F, we can naturally view V' as an F-vector space. Let 7 : V' — V be the
map that sends @ € V' to X © a. It is easy to see that € Lr(V'), and that for all
polynomials g € F[X], and all « € V', we have g ® @ = g(7)(a). Thus, instead of
starting with a vector space and defining an F[X]-module structure in terms of a
given linear map, we can go the other direction, starting from an F[X]-module and
obtaining a corresponding linear map. Furthermore, using the language introduced
in Examples 13.19 and 13.20, we see that the F[X]-exponent of V is the ideal
of F[X] generated by the minimal polynomial of 7, and the F[X]-order of any
element o € V is the ideal of F[X] generated by the minimal polynomial of &
under 7. Theorem 18.12 says that there exists an element in V' whose F[X]-order
is equal to the F[X]-exponent of V', assuming the latter is non-zero.

So depending on one’s mood, one can place emphasis either on the linear map
7, or just talk about F[X]-modules without mentioning any linear maps.

EXERCISE 18.11. Let 7 € Lr(V) have non-zero minimal polynomial ¢ of degree
m, and let ¢ = qbi' .-~ ¢;" be the factorization of ¢ into monic irreducible poly-
nomials in F[X]. Let ® be the scalar multiplication associated with 7. Show
that § € V' has minimal polynomial ¢ under 7 if and only if ¢/¢; ® f # 0 for
i=1,...,r.

506 Linearly generated sequences and applications

EXERCISE 18.12. Let ¢ € Lg(V) have non-zero minimal polynomial ¢. Show
that 7 is bijective if and only if X 1 ¢.

EXERCISE 18.13. Let F be a finite field, and let V' have finite dimension £ > 0
over F. Let r € Lp(V) have minimal polynomial ¢, with deg(¢) = m (and of
course, by Theorem 18.13, we have m < £). Suppose that a1, ..., a; are randomly
chosen elements of V. Let g; be the minimal polynomial of «; under 7, for j =
1,...,s. Let Q be the probability that lcm(g,...,gs) = ¢. The goal of this
exercise is to show that Q > Ai(s), where A?(s) is as defined in §18.3.

(a) Using Theorem 18.12 and Theorem 18.11, show that if m = ¢, then O =
A%(s).

(b) Without the assumption that m = /¢, things are a bit more challenging.
Adopting the matrix-oriented point of view discussed at the end of §18.3,
and transposing everything, show that

— there exists # € Dp(V) such that the sequence {z o ri}?io has
minimal polynomial ¢, and

- if, for j = 1,..., s, we define h; to be the minimal polynomial of the
sequence {7z (7’ (aj))}fio, then the probability that lem(hy, ..., k) =
¢ is equal to A?(s).

(c) Show that h; | g, for j =1,...,s, and conclude that Q > Aq;(s).

EXERCISE 18.14. Let f,g € F[X] with f # 0, and let h := f/gcd(f, g). Show
that g - F[X]/(f) and F[X]/(h) are isomorphic as F[X]-modules.

EXERCISE 18.15. In this exercise, you are to derive the fundamental theorem
of finite dimensional F[X]-modules, which is completely analogous to the fun-
damental theorem of finite abelian groups. Both of these results are really special
cases of a more general decomposition theorem for modules over a principal ideal
domain. Let V' be an F[X]-module. Assume that as an F-vector space, V' has
finite dimension ¢ > 0, and that the F[X]-exponent of V' is generated by the monic
polynomial ¢ € F[X] (note that 1 < deg(¢) < ¢). Show that there exist monic,
non-constant polynomials ¢y, ..., ¢; € F[X] such that

® ¢i| pirifori=1,...,1—1,and
e V/ isisomorphic, as an F[X]-module, to the direct product of F[X]-modules

V' .= F[X]/($1) x --- x F[X]1/(ds).

Moreover, show that the polynomials ¢y,..., ¢; satisfying these conditions are
uniquely determined, and that ¢; = ¢. Hint: one can just mimic the proof of
Theorem 6.45, where the exponent of a group corresponds to the F[X]-exponent of

18.6 The algebra of linear transformations (x) 507

an F[X]-module, and the order of a group element corresponds to the F[X]-order
of an element of an F[X]-module—everything translates rather directly, with just
a few minor, technical differences, and the previous exercise is useful in proving
the uniqueness part of the theorem.

EXERCISE 18.16. Let us adopt the same assumptions and notation as in Exer-
cise 18.15, and let = € L (V) be the map that sends a € V to X ® a. Further,
let ¢ : V' — V' be the isomorphism of that exercise, and let 7’ € Lg(V’) be the
X-multiplication map on V.
(a) Showthatc oz =17"o0o0.
(b) From part (a), derive the following: there exists a basis for V" over F, with
respect to which the matrix of 7 is the “block diagonal” matrix

G
G

G
where each C; is the companion matrix of ¢; (see Example 14.1).
EXERCISE 18.17. Let us adopt the same assumptions and notation as in Exer-
cise 18.15.

(a) Using the result of that exercise, show that V' is isomorphic, as an F[X]-
module, to a direct product of F[X]-modules

FIX1/(f{") %+ -+ x FIX1/(fs"),

where the f;’s are monic irreducible polynomials (not necessarily distinct)
and the e;’s are positive integers, and this direct product is unique up to the
order of the factors.

(b) Using part (a), show that there exists a basis for V' over F, with respect to
which the matrix of 7 is the “block diagonal” matrix

o

T = ©

!’
Cr
. . . ej
where each C! is the companion matrix of f;".

EXERCISE 18.18. Let us adopt the same assumptions and notation as in Exer-
cise 18.15.

508 Linearly generated sequences and applications

(a) Suppose a € V corresponds to ([g1]g,.---,[8&]¢,) € V' under the isomor-
phism of that exercise. Show that the F[X]-order of a is generated by the
polynomial

lcm(d)l/ ng(gla ¢1)’ ey d)t/ ng(gh ¢I))

(b) Using part (a), give a short and simple proof of the result of Exercise 18.13.

18.7 Notes

Berlekamp [15] and Massey [64] discuss an algorithm for finding the minimal poly-
nomial of a linearly generated sequence that is closely related to the one presented
in §18.2, and which has a similar complexity. This connection between Euclid’s
algorithm and finding minimal polynomials of linearly generated sequences has
been observed by many authors, including Mills [68], Welch and Scholtz [108],
and Dornstetter [36].

The algorithm presented in §18.3 is due to Wiedemann [109], as are the algo-
rithms for solving sparse linear systems in §18.4, as well as the statement and proof
outline of the result in Exercise 18.13.

Our proof of Theorem 18.4 is based on an exposition by Morrison [69].

Using fast matrix and polynomial arithmetic, Shoup [96] shows how to imple-
ment the algorithms in §18.5 so as to use just O(£(“+1/2) operations in F, where
w is the exponent for matrix multiplication (see §14.6), and so (w + 1)/2 < 1.7.}

+ The running times of these algorithms can be improved using faster algorithms for modular composition —
see footnote on p. 485.

